Resource Allocation

By Thomas Saaty

Allocating Resources to Projects

for

The United States Northeast Fisheries, Woods Hole, Massachusetts

- Determine the organization's strategic objectives and prioritize them
- Break the objectives down into subobjectives as necessary and prioritize them in turn
- Establish the Ratings Categories for each lowest level objective and prioritize them

Rate each Project for its contribution to each objective, using these Ratings Categories, and sum to get its Total.

ЕХТ 1 (REME 1.000) GREAT 2 (.411)	SIGNIFI 3 (.188)	MODER. 4 (.106	ATE TAD 5) 5 (.0	52)						
	Alternatives	TOTAL	COSTS	REB&&MAI- FISH DAT	BIO DATA	STOCK AS	ECONO AS	FORECAST- ENV MODL	POLLUTE	FISH TE	
1	131 PopDul -1	0.384	25	GBEAT	MODEBATE	EXTREME	.0310	.0147	.0000	MODEBAI	
2	132 Branch Needs	0.140	0.140 40								
3	132 Calibrate	0.173	15			GBEAT				EXTREME	
4	132 Eval Effort	0.139	35			GREAT					
5	132 Modelina	0.037	10			TAD				SIGNIFI	
6	132 Sampling Dat	0.149	35			GREAT				SIGNIFI	
7	133 Add Species	0.018	30			TAD					
8	133 Ecosys Impac	0.027	9								
9	133 Ethernet	0.025	7			TAD				MODERAT	
10	133 Rec Data	0.139	20			GREAT					
11	161 Pop. Assess.	0.019	6								
12	162 Human Intera	0.012	6								
13	163 Ecosy Intera	0.003	10								
14	171 Survey 1	0.107	10		EXTREME						
15	172 Survey 2	0.011	6		MODERATE						
16	173 Survey 3	0.005	10		TAD						
17	181 Fishbio 1	0.100	28		EXTREME						
18	182 Fishbio 2	0.011	30		MODERATE						
19	183 Fishbio 3	0.011	10		MODERATE						
20	191 Fish Stat 1	0.000	7								
21	192 Fish Stat 2	0.000	10								
22	201 Sea Sample 1	0.005	10								
23	202 Sea Sample 2	0.000	10								
24	211 Biostats 1	0.000	3							1	

	py the Prop	ects' lotal	Scores and
	Conto to or		adabaat
	Costs to ar	i Excel Spre	eadsneet
ijr&d	day~1.xls [Read-Only]		
	А	В	С
1	Northeast Fishe	eries Resource A	llocation
2	(only top ten projects	s were included)	
з	Project	Effectiveness	Cost/Project
4	(the	Total from Expert Ch	oice)
5	PopDyl-1	0.384	25
6	Calibrate	0.173	15
7	Sampling Data	0.149	35
8	Branch Needs	0.140	40
9	Eval Effort	0.139	35
10	Rec Data	0.139	20
11	Survey 1	0.107	10
12	Fishbio 1	0.100	28
13	Multisp Mode	0.085	10
14	Fish Chem 2	0.052	9
15			
16	ND PAD2 /		

To fund the projects that give the most effectiveness for the funds that can be spent, use Excel's Solver routine. Set up the Excel Spreadsheet as shown on the next slide, and enter \$150,000 as the amount available. Then use the Excel command "Tools, Solver" to find the optimum solution.

Set up the Excel Solver routine parameters to maximize the Performance Effectiveness target cell, and solve. Solver puts the appropriate 1's and 0's in the Decision

S <u>e</u> t Target Cell: \$G\$16 33	<u>S</u> olve
Equal To:	Close
\$E\$6:\$E\$15 Guess Subject to the Constraints:	Options
\$F\$16 <= \$F\$18	<u>R</u> eset A

The graph below shows that Effectiveness increases rapidly with additional expenditures up to about \$150 K, and less rapidly after that.

	A	В	C	D	E	F	G	Н		L.
36	\$Available	10.000	25.000	50.000	100.000	125.000	150.000	1	75.000 1	85.1
37	<pre>\$TotalCost</pre>	10.000	25.000	50.000	89.000	124.000	150.000	1!	59.000 1	78.
38	Performance	28.010	100.000	172.917	244.792	283.594	306.250	31	9.792 33	2.2
39										
40										
41										_
42				Performance Vs. Cost						
43					renomilance vs. oost					
44				450.000						
45				400.000						
46				400.000 -						
47				a 350.000 +						
48				2 300.000 +						
49				🖁 250.000 -						
50				5 200.000 -						
51				a 150 000 -						
52				A 100,000	-					
53				100.000 -	-					
54				50.000 +						
55				0.000	+			1		
56				0.000	50.00	10 100.0	000 150.000	200.000	250.000	
57							Cost			
58										_
1 50										

